
Understanding Collaborative Software Development:
An Interview Study

Kattiana Constantino, Shurui Zhou, Mauricio Souza, Eduardo Figueiredo and Christian Kästner
Federal University of Minas Gerais (UFMG) - Brazil and Carnegie Mellon University (CMU) - U.S.

ABSTRACT

In globally distributed software development, many software de-

velopers have to collaborate and deal with issues of collaboration.

Although collaboration is challenging, collaborative development

produces better software than any developer could produce alone.

Unlike previous work which focuses on the proposal and evalua-

tion of models and tools to support collaborative work, this paper

presents an interview study aiming to understand (i) the motiva-

tions, (ii) how collaboration happens, and (iii) the challenges and

barriers of collaborative software development. After interviewing

twelve experienced software developers from GitHub, we found

different types of collaborative contributions, such as in the man-

agement of requests for changes. Our analysis also indicates that

the main barriers for collaboration are related to non-technical,

rather than technical issues.

CCS CONCEPTS

• Software and its engineering → Open source model; Pro-

gramming teams.

KEYWORDS

Open Source Software projects, Fork-based Development, Collab-

oration in software development, Distributed Collaboration, Sus-

tained Developer Community Participation

ACM Reference Format:

Kattiana Constantino, Shurui Zhou, Mauricio Souza, Eduardo Figueiredo

and Christian Kästner. 2020. Understanding Collaborative Software Devel-

opment: An Interview Study. In 15th IEEE/ACM International Conference on

Global Software Engineering (ICGSE ’20), October 5–6, 2020, Seoul, Republic of

Korea. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3372787.

3390442

1 INTRODUCTION

Global software engineering involves globally distributed devel-

opers collaborating to develop large software systems [15]. In this

environment, many software engineers have to collaborate and deal

with issues from geographical, temporal, cultural, and language

diversity [15, 46]. In fact, collaboration is challenging – there are

many barriers to collaborative development in globally distributed

software projects. It is therefore important for researchers and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICGSE ’20, October 5–6, 2020, Seoul, Republic of Korea

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7093-6/20/05. . . $15.00
https://doi.org/10.1145/3372787.3390442

practitioners to understand these barriers in collaborative software

development.

Several previous studies [6, 10, 13, 14, 18, 40, 51] have tried to

understand developer collaboration practices as well as communi-

cation and social tools used to support developers working together

in software development tasks. In fact, understanding collaboration

and how it can be improved with more effective tools and processes

has long been a challenge in global software engineering research

and practice. For instance, Steinmacher et al. [40] reviewed the liter-

ature focusing on the 3C collaboration model and found 42 relevant

papers on this subject. However, most previous work proposes and

evaluates models [1, 42], theories [2, 45], and tools [4, 18, 28] to

support collaboration and to help developers in collaborative devel-

opment tasks. For instance, Lanubile et al. [18] enumerated several

existing tools to support collaborative work along the software

product lifecycle.

Collaboration is vital to the sustainability of the project. One of

the ways to promote sustainability is to enhance the motivation,

engagement, and retention of developers in the project [34, 35, 39].

Therefore, beforewe purpose strategies to potentialize collaboration

among developers, we want to understand the motivations, the

process, and barriers involved in it. We still lack qualitative studies

to understand the reasons and barriers involved in collaborative

software development.

This paper presents results from an interview study aiming to

understand the complexities and barriers for collaboration in glob-

ally distributed software projects. After a pilot study, we designed

a semi-structured interview protocol and interviewed twelve expe-

rienced software developers mined from GitHub. Each interview

lasted between 30 to 60 minutes and was guided by three main

research questions about (i) what motivates developers to collabo-

rate, (ii) the collaboration process adopted, and (iii) challenges and

barriers involved in collaboration.

Our results indicate three main types of collaborative contribu-

tions: (i) repository management tasks, (ii) issue management tasks,

and (iii) software development tasks. That is, developers collaborate

not only on writing code and implementing features, but they also

organize themselves and coordinate management tasks, such as

coordinating and planning change requests. We also uncovered a

number of communication channels used by developers to collabo-

rate, ranging from GitHub forum to Slack and email. Furthermore,

the main barriers for collaboration mentioned in our study are

related to non-technical, rather than technical issues.

In summary, we contribute with (i) providing detailed empirical

evidence about open collaboration in fork-based development faced

by open source software developers; and (ii) bringing a discussion of

the opportunities of collaboration could be more explored. We hope

the open source software communities and researchers will take

advantage of this paper to comprehend better the opportunities

55

2020 ACM/IEEE 15th International Conference on Global Software Engineering (ICGSE)

of collaboration among developers and design strategies to make

greater use of them.

2 BACKGROUND AND RELATEDWORK

In developing a theoretical basis for this paper, we have drawn

from collaboration literature [9, 26, 38] to discuss how collabora-

tion occurs in the context of fork-based development. Section 2.1

introduces some basic concepts used in this work and Section 2.2

focuses on previous works related to collaboration.

2.1 Background

Open source software (OSS) is a notable model of open collabora-

tion, which happens when people are trying to make something

together to achieve the same goal [19, 36, 50]. It is the basis for

sharing knowledge, experience, and skills among multiple team

members to contribute to the development of a new product. In our

context, software development is a collaborative problem-solving

activity where success is dependent upon knowledge acquisition,

information sharing, and integration, and the minimization of com-

munication breakdowns [2, 45]. Indeed, software developers must

collaborate in all software life-cycle phases to successfully build

software systems. In a typical software development process, devel-

opers perform many different tasks, such as developing software

artifacts (source code, models, documentation, and test scenarios),

managing and coordinating their development work or team, and

communicating with each other [50].

In this research, we focus on globally distributed development

of open source software on GitHub. GitHub is a Web-based code-

hosting service that uses the Git distributed version control system.

Furthermore, GitHub is collaborative and available for free. As of

January 2020, GitHub reports having over 40 million users and

more than 100 million repositories 1. GitHub has become an es-

sential tool in technology areas that demand collaboration, such as

globally distributed software development [43].

Fork-based development and the corresponding model of submit-

ting pull requests lower the “barrier for entry” for users interested

in collaborating on an open source software project [14]. In this

model, collaborators “fork” the repository to create an own copy

of the source code and make changes without asking permission

from the repository owner. Next, collaborators can submit a pull

request to inform the project maintainers to integrate the changes

into the main branch of the project. Pull requests are often used to

initiate a code review or discussion around commits.

2.2 Related Work

Several studies have discussed diverse aspects of collaboration in

open source software development projects [11, 13, 14, 17, 22, 52].

However, each one focuses on distinct aspects and perspectives.

For instance, two studies investigated the "fork & pull" develop-

ment model from the integrators’ [14] and contributors’ [13] per-

spectives. Both studies investigated practitioners’ working habits

and challenges alike. Gousios et al. [14] investigated which motiva-

tion keep contributors working on the project and how to not dis-

courage them. In a complementary study, Gousios et al. [13] pointed

out that it is essential to reduce response time, maintain awareness,

1https://en.wikipedia.org/wiki/GitHub

improve communication, and improve quality (e.g., source code

and documentation). Contributors also need to follow guidelines

and best practices for their contributions to be accepted. Although

these papers investigated different perspectives of “fork & pull” de-

velopment, they do not target collaboration as we do in this paper.

Our work includes an interview study with twelve experienced

collaborators of open source software projects hosted on GitHub.

We aim to know how the community supports growing supplies of

collaborators through spontaneous collaboration.

Zhou et al. [52] show that there are significant inefficiencies in

the fork-based development process of many communities, such as

lost contributions, rejected pull requests, redundant development,

and fragmented communities. They pursue two complementary

strategies: (i) identifying and suggesting the best practices for inef-

ficient projects; and (ii) designing new interventions to improve the

community awareness for correct using fork-based development

and helping developers to detect redundant development. In con-

trast, we focus on a qualitative analysis based on interviews with

experienced software developers.

Social theories propose that the sustainability of the community

depends on engaged and aware community members in order to

support demands on the community [5, 11]. Some studies focus

on how developers use GitHub ’s social features to understand

developer behavior and project activity to evaluate success, per-

formance, and potential collaboration opportunities. For instance,

Marlow et al. [23] observed that developers use signals (e.g., skills,

relationships) from the GitHub profile to form impressions of users

and projects, focusing specifically on how social activity streams

improve member receptivity to contributions through pull requests.

Tsay et al. [44] found that both technical and social information

influence the evaluation of contributions. McDonald and Goggins

[24] noted that one of the main reasons for the increasing number

of contributions and contributors to a project are features provided

by GitHub. In the present study, we focus on how the project con-

tributors perceive the collaboration process. This work may include

but does not focus on the motivations and strategies to find new

contributors to a project. Additionally, we focus on the social aspect

of collaboration, as opposed to the technical aspects in Tsay’s work

[44], for instance.

3 STUDY DESIGN

This section describes the goals, research questions, and methods

used in this study.

3.1 Goal

Collaboration among open source software developers could take

many forms. In a sense, there is a range from the enduring partner-

ship between members at an open source software project team,

such as to join insights to solve an issue, to program in pairs, to

share time, resources, and to acquire knowledge. Collaborators

may have expectations concerning the kinds of contributions they

want and concerning the roles and responsibilities of each party.

Sometimes, the term “collaboration” may have different meanings

to the collaborators and others who may be directly or indirectly

involved. Therefore, the main goal of this paper is to understand how

56

collaboration happens in fork-based development. We want to iden-

tify which possible collaboration tasks are common in fork-based

development projects. Furthermore, we aim to comprehend how

collaboration among developers happens in fork-based develop-

ment projects. We expect that it could help project maintainers to

optimize collaboration opportunities and attract more community

members.

3.2 Research Questions

To obtain a deep understanding on how collaboration in fork-based

development happens, we interviewed twelve experienced collabo-

rators in open source software projects in the context of the social

coding site GitHub to address the research questions described

below.

RQ1 - What are the motivations to work collaboratively

in fork-based development projects? With RQ1, we want to

investigate the individual motivation of fork-based development

contributors. We also discuss the reasons for working indepen-

dently mentioned by participants.

RQ2 - How does the collaboration process occur in fork-

based development projects? To make the analysis more com-

fortable, we further refine RQ2 in the following sub-questions.

RQ2.1 - What are the collaborative contributions in fork-based

development projects? With RQ2.1, we want to identify all collabora-

tive contributions reported by participants and highlight the main

collaborative contributions. Moreover, we want to know which col-

laborative contributions could be further explored into a software

project.

RQ2.2 - What are the roles involved in fork-based development

projects? With RQ2.2, we want to comprehend how the contribu-

tors organize themselves, in particular, considering their roles and

interest in different types of collaborative contributions.

RQ2.3 - How this collaboration happens (communication channels)

in fork-based development projects? With RQ2.3, we want to know

which communication tools are often used by participants and

understand how communication occurs during the collaborative

contributions in fork-based development projects.

RQ3 -What are the challenges and barriers inworking col-

laboratively in fork-based development projects?With RQ3,

we are interested to know which challenges and barriers are faced

by collaborators when working collaboratively in fork-based de-

velopment. Besides, we want to know which directions we could

pursue in order to optimize the opportunity for collaboration in

fork-based development.

Overall, answering these questions helps research and industry

alike to analyze, understand, and improve the opportunities of

collaboration in fork-based development.

3.3 Research Method

Pilot. To better understand perceptions about collaborative con-

tributions in fork-based development projects, we met with all

researchers involved in this study to discuss an interview protocol.

We first decided to run a pilot study by selecting three developers

from our contact lists. With these pilot interviews, we refined the

protocol, questions, focus, and time for interviews. All participants

in the pilot interviews are Ph.D. candidates in Computer Science or

Information Systems, while also software developers and technical

contributors to GitHub projects. Among others, we learned that

time for answering was too short, and we decided to give more

time to explore the topic better. Therefore, we reformulated the

interview script and excluded the pilot interview data from our

analysis.

Qualitative Data Analysis.We qualitatively analyzed the in-

terview transcripts using standard coding techniques for qualitative

research [7, 8]. Two researchers analyzed the responses individually

and marked relevant segments with codes (tagging with keywords).

Later, the researchers compared their codes to reach consensus

and tried to group these codes into relevant categories. With the

support of the other two researchers, the codes and categories were

discussed to extract key findings and theories.

Interview Protocol.We conducted individual interviews that

were conducted face to face or with Skype. Each interview lasted

between 30 to 60 minutes. We recorded and transcribed interviews

in order to code them. The interviews were semi-structured based

on five guiding questions, as follows.

• In the fork-based development project hosted on GitHub

which you are mostly involved in, do you prefer to work

alone or with other developers? Why?

• In the <project name> project, what kind of collaboration is

the most common among developers?

• Are there other collaborations that are important, but little

explored in the <project name> project that you participate

in?

• Do you usually open some communication channels with

any of the project developers in <project name> for more

collaborations? How? Which tools do you use?

• In the <project name> project, in which you are involved in,

do you usually visit the forks of other developers to find

something that might be useful for you?

Since our interviews were semi-structured, the interviewers asked

follow-up questions that were not in the interview script in order

to further explore potentially interesting points that participants

said. Moreover, we talked for a short time informally with the

participants before the interviews to facilitate a friendly and re-

laxed atmosphere. During the interviews, we encouraged them to

talk freely. In some cases, the participants referred to GitHub for

clarifications or explanations. All these strategies supported the

exploratory nature of our study and allowed us to examine unex-

pected insights.

Participant Selection. In order to select participants, we first

mined frequent GitHub contributors with more than 500 commits

57

Table 1: Participants Demographics. Each participant (P#) answered the interview questions focusing on the project to which

they collaborated. Participants’ demographic information concern gender, last education status, years of OSS development

experience, number of contributions on GihHub for the past three years, and previous or current roles in the project.

Participant Gender Education
OSS Experience

(years)

Nb. of GH Contributions*

(last 3 years)
Contribution Type**

P01 M B.S. 4 >870 TC/U

P02 M B.S. 2 >1,800 TC

P03 F B.S. 4 >2,740 TC/SEO

P04 M M.S. 5 >600 TC/ME

P05 M B.S. 9 >4,580 TC

P06 M B.S. 11 >3,900 TC

P07 F M.S. 7 >2,550 FPM/TC/SEO

P08 M Ph.D. 10 >3,500 CM, SEO/M/TC

P09 M M.S. 11 >3,950 ME/TC/SEO

P10 F M.S. 4 >2,500 CM/ME/TC/SEO

P11 M B.S. 8 >4,300 FM/TC/SEO

P12 M M.S. 5 >530 PM/TC/M/U

*We updated the values of the “Nb. of GH Contributions” column in March 2020.

**The acronyms used in the “Contribution Type” column stand for: Community Manager (CM), Technical Contributor (TC), Former Project

Manager (FPM), Social Event Organizer (SEO), Maintainer (M), Mentor (ME), and User (U).

in the last three years and Portuguese speakers (the language of the

Brazilian authors) using GitHub’s REST API v32, in line with prior

studies on GitHub [29, 30, 47, 48]. Next, we sent e-mails to invite

the top eighty contributors for an interview. A total of eighteen

contributors replied to the invitation. However, six of them later

cancelled the interviews. Therefore, twelve contributors partici-

pated in the final interview process. Before starting the interview,

participants provided their demographic information, including

whether they are more than 18 years old (condition to be inter-

viewed). In Table 1, we summarize demographic information of our

interviewees. We identified each participant with an anonymized

identifier (P#). Nearly all participants volunteered their time to

contribute to their respective project and only two work full time

as a professional in the project (and receive financial incentives).

Notably, all participants have knowledge in software engineering

or software development and more than three years of software

development experience.

Project Selection. For each interviewee, we focused the discus-

sion on a single open source software project, that we would pick

upfront. We used the project during the interviews to contextu-

alize the questions for participants. Moreover, the project could

help them remembering or focusing answers on their collaborative

experience into a project in the context of fork-based development.

When the interviewee is active in multiple projects, we would pick

the more popular one, in terms of stars and forks.

4 RESULTS

This section presents the results of the interviews according to each

research question proposed in Section 3.2.

2https://developer.github.com/v3/

4.1 RQ1 - What are the motivations to work
collaboratively in fork-based development
projects?

The first research question aims to investigate the individual mo-

tivation of open source software contributors. Regarding the col-

laborative aspects, i.e., working with others in the execution of

specific tasks, five participants stated that they prefer to work with

others, five participants prefer to work alone, and two stated that it

depends on each specific situation.

Working Collaboratively. In Table 2a, we present the reasons

why collaborators prefer to work as a team. The results show that

some motivations for working collaboratively are related to pos-

itive impacts on the project (e.g., benefits to knowledge sharing,

strengthened synergy in teamwork, increased productivity, and

increased code quality). For example, P04 explained “I prefer to

work with other developers, because of their opinion on the developed

code is essential to make developers more confidence,” and similarly,

P09 emphasized “I prefer to work together with other developers. It

increases code quality. Also, you can learn more, because you interact

with your colleagues all the time. Moreover, you can have new ways

to solve problems.”

Working Independently. In Table 2b, we show the reasons

why collaborators prefer to work independently. The motivations

for working independently are for particular benefits, own satisfac-

tion, no pressure, and own pace. Besides, the participants mentioned

some drawbacks for working in groups, such as the dependence of

other collaborators and the time-consuming nature of collabora-

tive work. For example, when collaborators need to make a joint

decision. These drawbacks could postpone the project results. P10

reported: “You depend on the result of other people and of more time

58

Table 2: Reasons for working collaboratively and indepen-

dently.

(a) working collaboratively

Codes Participants

Knowledge sharing/learning 4

Teamwork 3

Productivity 2

Increased code quality 2

Professional activities 1

Positive if it is asynchronous 1

Improved review 1

(b) working independently

Codes Participants

Work on personal interests 2

No pressure\own pace 1

Working collaboratively is time consuming 1

Dependency on others 1

Different timezone 1

Work on isolated contributions 1

Not a core contributor 1

Coding is an independent task 1

Only collaborate if help is needed 1

to solve an issue or make a decision. It can be a problem.” P08 was

one of the participants who remarked that sometimes likes to work

with other developers, like “pair programming,” and other moments

it prefers to work in own pace: “I prefer to work alone, in my own

time, for fun, without any pressure.”

Our results show the developers’ motivations for collaborating

into the open source software project both in a group or indepen-

dently. These motivations coincide with the motivations found by

previous works [31, 32, 41, 49]. We realized that the participants

reported some of their experiences and possible outcomes of the

collaborations in the project. As well as their expectation for some

recognition concerning their works, even if it is not monetary.

RQ1 - Working Collaboratively. Developers’ motivations

are focused on providing positive results on the project.

They highlight benefits of knowledge sharing, strengthened

synergy in teamwork, increased productivity, and increased

code quality.

Working Independently. In this context, developers perceive

personal benefits by working without pressure and at their

own pace. For instance, they do not have to deal with

dependencies among developers and time-consuming joint

problem-solving activities.

4.2 RQ2 - How does the collaboration process
occur in fork-based development projects?

The second research question aims at characterizing the collabora-

tion process in the fork-based development community. Therefore,

we aim to understand: what are the collaborative contributions

perceived by the participants, who are the involved people, and

how this collaboration happens (communication channels).

RQ2.1 - Collaborative Contributions. In Table 3, we indi-

cate that feature developing, issue solving, code integrated into the

upstream, and code review are the most recurring collaborative

contributions mentioned by the participants. In fact, previous study

[21] confirms that issue fixing (“fix bug”) and feature development

(“add new feature”) are the top motivations for developer. The re-

sponses of participants also indicate a transparent collaboration

process that revolves around solving issues. It includes opening

and categorizing issues, developing code to implement changes

(e.g., new features, improvements, or fixes) required in these issues,

submitting pull requests, reviewing the code, and integrating the

code to the upstream as presented in Table 3. The fork-based devel-

opment model helps the control of the contributed code quality by

selecting new contributions, and incremental code reviews [12, 44].

Thereby, collaborators perceive each task as a contribution to the

projects, not only the code itself. We observe that some tasks are

suitable for a collaborator to do alone. However, some collaborators

prefer looking for collaboration with other developers to perform

these tasks. As seen in Table 3, Software Development Tasks
and Issues Management Tasks are the most prominent categories
regarding what participants understand as collaborative contribu-

tions in fork-based development projects.

RQ2.1 - Software Development Tasks and Issues Management

Tasks are the most notable categories concerning what partic-

ipants understand as collaborative contributions. In particular,

they emphasize the tasks of feature developing, issue solving,

code integrated into the upstream, and code review.

RQ2.2 - Roles involved. In Table 4, we show the roles of de-

velopers involved in collaborations. The first column of Table 4

presents the two categories we identity: Software Developer
Project Roles and Committer Type. The analysis of Table 4
revealed four perspectives on the roles involved in fork-based de-

velopment projects: their role in the development process, their

contributor type, their expected characteristics, and their respon-

sibilities. Regarding software development roles, the roles of “de-

veloper” and “maintainer” were the most mentioned by the partici-

pants. The roles of project promoter, coordinator, core team, and

reviewer were also mentioned.

Two participants also used categories to classify committer type

as “peripheral contributor”, “core contributor”, and “newcomers” as

presented in Table 4. Interestingly, these types of committers match

the terminology used in recent research paper [20]. This finding

indicates an alignment between software development research

and practice. There are a set of responsibilities attributed to these

collaborators, as stated by P05 and supported by P03 and P08:

59

Table 3: Categories and codes for the types of collaborative

contributions in fork-based development projects. We ob-

served four main types of collaborative contributions: (i)

Software Development Tasks, such as development of new

features, code review, and handling pull requests; (ii) Issues

Management Tasks, for the management of issues including

their opening, categorization and solving; (iii) Repository

Management Tasks, for tasks related to handling the repos-

itory (e.g., updating the repository with new code); and (iv)

Documentation Tasks, such as writing, improving and trans-

lating documentation.

Category Codes Part.(#) Freq.

Software feature developing 9 19

Development code review 6 10

Tasks writing code 4 9

opening a pull request 4 7

submitting pull request 2 2

Issues issue solving 7 15

Management issue reporting 4 8

Tasks triaging issue 4 6

issue opening 4 4

issue detecting 2 3

Repository code in upstream 7 9

Management code in forks 2 4

Tasks manage repository 2 2

Documentation writing documentation 4 6

Tasks translating documentation 3 5

internationalization project 3 4

improving documentation 3 3

Table 4: Categories and codes for the people roles involved

in collaboration in fork-based development projects.

Category Codes Part.(#) Freq.

Software developer 8 12

Developer maintainer 5 5

Project team leader 3 3

Roles project promoter 2 3

reviewer 2 2

coordinator 1 2

Committer peripheral contributor 2 4

Types core developer 2 3

newcomer 2 2

“I am a core team member and also, one of the project maintainers.

So, I can create a branch, or ask for someone to review a pull request.”

Besides, P02 said (supported by P01 and P04): “Some issues are more

appropriate for newcomers.”

Some codes identified in this analysis are related to desired char-

acteristics of contributors. The main desired characteristics are

Table 5: Categories and codes for the collaboration channels.

Category Codes Part.(#) Freq.

Communication and GH Issues (forum) 7 12

Coordination Slack 3 4

GH PR (forum) 3 3

Remote e-mail 3 5

Interactions Gitter tool 3 3

Telegram 3 4

IRC 1 2

Meeting.gs 1 1

Twitter 1 1

WhatsApp 1 1

*The acronyms used in the “Codes” column stand for: GitHub (GH),

Pull Request (PR), and Internet Relay Chat (IRC).

“availability to collaborate” and “engagement”, also cited in litera-

ture [21, 25, 33]. For instance, availability includes the contributor’s

ability to conciliate the volunteer aspect of collaborating in fork-

based development projects with their formal employment schedule.

P07 affirmed (supported by P02): “Collaborators need to be very en-

gaging to work on an open source project.”

RQ2.2 - Software Developer Project Roles and Committer

Types are the categories of people involved in collaboration

into the project. Committer Types are concerned with how

often the collaborators commit to the project.

RQ2.3 - Collaboration Channels. In Table 5, we present the

codes related to the communication channels and tools used for

collaboration in fork-based development projects. GitHub issues

(forum) was the most cited. Considering that all participants are

GitHub users, it is not surprising that they mention this platform

as their main collaboration channel. However, it is interesting to

notice that the issue system is a core element in the open source

software collaboration process. It complies with the participants’

perception of issue solving being an essential collaborative contri-

bution in the fork-based development. Bissyandé et al. [3] found

a considerable correlation between the number of forks and the

number of issues that brings a positive impact on the project. In-

deed, through issue reporting, collaborators help identify and fix

bugs, document software code, and enhance the software. More

than one participant also mentioned E-mail, GitHub Pull Requests,

Gitter, Telegram, and Slack as communication channels for col-

laboration. Prior works reported similar findings for open source

software projects [10, 33] and Commercial projects [16] on GitHub.

They pointed out that developers usually communicate through

text messages.

Participants pointed out the communication tools are used in

several contribution tasks in the life cycle of the open source project.

For example, these tools are used for promoting the project, for

recruiting new collaborators, for asking help to develop a new fea-

ture or to fix an issue, for discussing to solve an issue, for directing

the project, or other demands. P8 explained: “... I posted on Twitter

60

asking whether someone could help me to develop a new feature for

this repository... Several developers answered me.” and also, P9 shared:

“...I sent an e-mail asking whether they could accept to be members of

the maintainer group of the repository.”

RQ2.3 - Participants pointed out the communication tools

used in several contribution tasks in the life cycle of the open-

source project. GitHub issues (forum) was the most cited one

by collaborators. Moreover, they usually tend to communicate

with text messages.

4.3 RQ3 - What are the challenges and barriers
in working collaboratively in fork-based
development projects?

In order to answer RQ3, we identify the challenges and barriers

that would impact on decisions into fork-based development as

presented in Table 6.

Knowledge and time. Knowledge is one constant challenge

and barrier in a project. Therefore, the core team needs to know

how to manage and make the knowledge available in the project.

P07 (supported by P11) was emphatic in saying that “Project needs to

have collaborators answering questions...” for the project to survive

because without the developers answering questions, the project

fails in its first goal, which is to attract collaborators or maintainers

[27]. P01 agrees with P07, but looks for knowledge between the

project’s collaborators senior (supported by P02 and P06).

“I have a greater tendency to ask for help from a collaborator who

has contributed for a longer time and who has more excellent knowl-

edge.”

Therefore, when the core team is aware of these matters, it has

the challenge of being available to meet the demands of peripheral

and newcomer collaborators who want to participate in the project.

For instance, it can happen as mentoring in a forum or the code

review phase.

Another point related to this issue is that collaborators do not

always have the time and technical knowledge necessary to help,

as P02 warns “... we use many packages made by other developers... I

encounter several problems ... I try to solve them myself, but we don’t

always have the time or knowledge to do it.” That is, the participant

highlights that acquiring knowledge takes a lot of time and effort.

P02 and P07 also reported the lack of time as one of the collaboration

barriers prevalent. For instance, P2 states: “The maintainer has a job

and does not have time for the project ...” and P07 concludes “(the

collaborator needs) to have time to contribute, after all, everyone has

limited time.”

When the collaborators have technical knowledge enough for the

project, and all team is comfortable to share knowledge with each

other, the next goal for the core team is to retain this knowledge

into the project. One possibility is encouraging the collaborators to

share their experience. For instance, whether the developer knows

a specific functionality, they could develop a similar functionality

or mentor someone that wants to develop it. P02 explains:

“...I worked in a functionality previously about phone patterns. Af-

ter someone, from another country, asked me the same functionality,

I adapted it to his country pattern...”

It could be a drawback for the project losing trained collabora-

tors, and with relevant knowledge. Thus, some strategies to retain

these collaborators need to be done, as P11 explains (supported

by P07): “... some regular contributors sometimes do not talk to the

collaborator much. However, as the collaboration is excellent, we try

to keep talking, to get closer, because the collaborator may know that

in the future we can help with another contribution.”

Steinmacher et al. [41] found that the lack of experience of the

quasi-contributors deemed the work unacceptable. Qiu et al. [33]

related that lack of time is one of the reasons for developers to stop

contributing to GitHub projects. Lack of time was also identified

by Pinto et al. [32] as the most common barrier to participation

faced by peripheral contributors and Miller et al. [25] found that

“no time” was one of the reasons for disengagement in open source

software projects.

Documentation. A barrier related to documentation is mainly

the lack or out-of-date documentation. A newcomer enters the

project to collaborate, but they do not find enough documentation

to understand the project, as P11 reported: “... (When) people wanted

to know about more advanced things before collaboration. Then they

opened issues that the documentation did not supply.”

The core team recognizes the importance of documentation.

However, documentation tasks are not as prioritize as coding tasks.

The following are the reports of P05 and P10, respectively: “...The

documentation is left towards the end (of the project)” and “Collab-

oration on documentation in both the code itself and official doc-

umentation are little explored, but it is as relevant as the primary

collaboration (coding).”

On the other hand, documentation is also the gateway to start

collaboration on a project. It can be an excellent opportunity to be-

come part of the contributor team. Newcomers who are unfamiliar

with the project could start to collaborate with the project making

or improving documentation, as reported by P06 (supported P03

and P09): “You have to emphasize that documentation is not so ex-

plored. For instance, the project’s internationalization is an exciting

contribution. You could collaborate with translating documents...” and

“I believe that a little more documentation would be very important.

Many people could collaborate with documentation, since they do not

collaborate with code.”

Several works stated the lack of documentation as a barrier for

collaboration in the open source software project. The usual rec-

ommendation is to keep useful project documentation up to date,

since documentation is one of the sources of knowledge about the

project. In this way, it is the opportunity for encouraging collabora-

tion from newcomers and becoming them familiar with the project.

Hence, documentation should be easily accessible for developers.

Some careful with documentation of the project could avoid demo-

tivating developers, losing contributions for misunderstanding, and

61

Table 6: Challenges and barriers faced by participants.We present the categories as follow: Knowledge and Time, Documentation,

Collaborators, and Community Issues. For each category, we outline the main codes based on the frequency of code and the

number of participants citing them.

Category Codes Participants Frequency

Knowledge and Time Clarifying any doubts 6 11

Collaboration depends on specific knowledge 5 7

Collaboration depends on free time 4 8

Seeking information/clarification 4 4

Conciliating employment and volunteer job 2 3

Documentation Lack of documentation 5 6

Collaborators Lost contribution 3 4

Dependency of collaborators 2 2

Lack of mentor 2 2

Lack of maintainer 2 2

Community Issues Code in forks 3 3

Community expectancy 2 3

No compliance with contributing guidelines 2 2

Problem with maintainability 2 2

overloading the discussion forums with questions quickly clarified

in documentation.

Collaborators. Collaborators are the key to the success of an

open source project. Therefore, we show the barriers that the par-

ticipants based on their experiences point out as situations that

discouraged these collaborators from remaining in the project. As

a consequence, the project loses possible contributions. P08 exem-

plifies a situation “... Something that happens a lot is someone who

starts a contribution, and for some reason, he does not end it.”... [the

participant showed a fork with 26 ahead commits in his GitHub

project]... “For example, this collaborator worked a lot, and we did

not even know about it.” Such a problem likely happens because of

carelessness with the collaborators. Another possible explanation

concerns the high number of forks in the project, which makes it

difficult to know who is working and in what [35]. Hence, to avoid

losing collaborators or collaborations, P07 alerts:

“If volunteer collaborators are making several contributions, adding

several things to the project, and the core team stops giving feedback

to them. Certainly, they will abandon that work.”

Other participants faced difficulties when the project decisions

were too centralize only on one member of the core team. Many

decisions to take, issues to solve, pull requests to review were cu-

mulated or frozen waiting for maintainer decision. P02 reported:

“First, Maintaining a project is too a hard task, mainly when it is

not the main activity of the maintainers. It may overwork them and

make them abandon the project. But, whether they receive financial

incentives, then they could dedicate themselves exclusively to the main

project and attends the community demands.”

Considering the statements of these participants, the collabo-

rators have a great challenge to bring these developers back (if

possible). For P07, this depends more on the motivation of the col-

laborators than on the efforts of the core team:

“If after a while, someone (from the team) gives feedback to the col-

laborator again, he will have to be very motivated to return working

on the issue. After a while, without working on the code, the collabora-

tor does not remember the entire context anymore. So, it’s too difficult.

The collaborator has to be really motivated to keep contributing with

the project”

Since it may not be possible to have the "lost" collaborator back,

the next challenge for the maintainers presented by P08 is to find

another developer who can continue the activity that was previ-

ously stopped: “So, I wanted to highlight it for someone who wants

to continue this work.” Another challenge is knowing how to appre-

ciate each contribution, P10 emphasizes the importance of valuing

all collaborations, even those that seem not to have much value:

“(After, listed some contributions) These three contributions are less

used, sometimes they are seen as not as important, but in fact, they

are essential. ”, “... I believe these are collaborations that are not the

main ones, but they are just as relevant.”

Community Issues - Fork Fragmentation. Some developers

take advantage of the fork to specialize the project for their interest.

Furthermore, in some cases, these new functionalities can not be

updated for the main project; thus, this practice makes it difficult

to manage the project’s functionalities. P12 confesses this practice:

“Some forks are more advanced than others. One fork can have a

subset of functionality, while others may have other different subsets.

62

Thus, if you want to use the project as a whole, there are several frag-

mented versions.”

Therefore, fragmentation is one of the drawbacks of fork-based

development and requires collaboration. Many development efforts

over multiple project versions are wasted, and many bug-fixes are

not propagated [37, 52]. Consequently, it makes a great set of spe-

cialized forks. For projects with a large number of forks, it becomes

impracticable [37].

Community Issues - Failing to Comply with the Project’s

Contribution Guidelines. In order to attract collaborators and

keep them active, project maintainers usually have their code of

conduct and guidelines of best practices for contributions. This

documentation drives new collaborators on the community’s ex-

pectations regarding posture, commitment, and quality of work.

However, we see reports on some procedures that collaborators

still fail to follow or that require improvement, before accepting a

relevant pull request as P10 explains:

“. . . So, to prioritize code organization and review more appropri-

ately, I have asked the author to separate this in different pull requests

and different commit to keep history, to make it easier to fix, to facili-

tate the review.”

Another situation was reported by P05 that impacted the project

and future maintenance “Another collaboration . . . the tests! The col-

laborators send the features, but the tests are missing, so that feature

can cause a break (in the project).”

Community Issues - Work Overload. Besides, some contri-

butions demand great efforts from both the newcomer or peripheral

collaborators and the core team, as P05 reported and supported by

P04.

“Some projects are so challenging to test. For instance, they do not

have any test suite for what you have done. So, first, you have to open

a new issue to create the test suite for that. Next, you have to involve

the core team and then do the regression tests, in this case. Also, some

projects are so complex to test. For example, android test library, or

libraries for platforms (some are in C ++, not even in JavaScript). So,

you have to make an excellent suite to test everything.”

Finally, P2 exposes the difficulty of a project having only one

maintainer: "I think that because it does not have a company behind

it, it has only one individual, so, I think that sometimes there is a little

lack of organization."

RQ3 – We identified four categories of barriers and challenges

faced by developers. That is, collaborators face issues regarding

lack of knowledge and time, documentation, the dependency

of collaborators, and community issues. Fork fragmentation

and work overload were recurrently mentioned.

5 DISCUSSION OF THE FINDINGS

In this section, we discuss and summarize some of our main find-

ings for researchers and practitioners.

Task Segregation. Many tasks have a level of difficulty that re-

quires the equivalent level of expertise to be solved. Several projects

have rated some issues as easy for newcomers, so that those can feel

more comfortable starting to collaborate on a project. Newcomer

issues are also a way of communicating that the project is friendly.

In fact, GitHub has some default flags for easier issues, such as

“good first issue”. Our work shows that many projects are aware

of newcomers and advertise a friendly project. On the other hand,

some comments raised concerns about how overwhelmed the core

team can be, especially, since for many first option is always to seek

help from the core team. Indeed, some issues require the experience

and knowledge of the core team. Since, the core team needs to di-

rect the project, it holds great responsibility. However, we wonder

to what extent some issues could be solved by peripheral or even

by newcomers? (It is important to note that some of them have

expertise coming from other projects). To what extent collabora-

tions that are reserved for the core team could be delegated to other

collaborators able to help them? Furthermore, to what extent it

motivates them to collaborate and engage in the project?

Task Sizing. Our results show that dependencies can be chal-

lenging, especially if they involve the core team. Hence, such con-

tributions may be complicated. We wonder to what extent a larger

task could be better divided in smaller tasks in order to optimize

the efforts of collaborators and minimize the dependence? How

many developers would be enough to perform the complete issue

without impacting project schedule and resource.

Challenges in collaboration with non-domain members.

Indeed, collaborations in the software development process depend

on specific knowledge. Depending on the nature of the project, it

can be both technical and non-technical knowledge. Capturing the

knowledge of non-technical professionals, who are not software

developers or engineers, is not a trivial task. Mediators who can

bridge the gap between the two different universes of knowledge

are urgently needed.

More tools does notmeanbetter communication.Geograph-

ical and chronological distances between software developers can

restrict both formal and informal communication. Hence a more sig-

nificant number of tools does not equate to better communication.

Therefore, to improve communication between developers, several

types of communication tools, synchronous or asynchronous, can

be impartially engaged during software development processes.

Nonetheless, malpractice and dependency of such tools can, at

times, result in adverse effects. In other words, it can bring upon

misunderstandings and misinterpretation during any of the differ-

ent phases of project development processes:

(1) provide knowledge to different channels, failing to reach

every one of them;

(2) provide incomplete information or partial experience to all

involved or interested parties;

63

(3) provide unsolicited information to non-interested parties;

(4) produce excessive details; and

(5) hold back on hard to reach or inaccessible data.

Therefore, it is crucial to define and update the communication

policies specifying guidelines for critical information as well as

possible communication noise that should be kept available to all

members, including all communication channels.

6 LIMITATIONS AND CREDIBILITY

In this section, we clarify potential threats to the study’s credibility

and discuss some bias that may have affected the study results. We

also explain our actions to mitigate them.

Results. The results presented in the study are first and foremost

observations and interpretations. These results reflect individual

perceptions of practitioners, and our interpretations of their re-

sponses. All researchers participated in the data analysis process

and discussions on the main findings, to mitigate the bias of rely-

ing on the interpretations of a single person. Nonetheless, there

may be several other important issues in the data collected, not yet

discovered or reported by us.

Interview scripts.We used an interview script to ensure that

all participants were asked the same base questions. The interview

script was developed in stages. The script was first piloted in three

interviews. After these pilot interviews, we reformulated the script

to ensure that the questions were sufficient to generate data to

answer our research questions. Only then, we invited the other par-

ticipants to the study. The use of semi-structured interviews was

also relevant for allowing the on-the-fly adaptation of questions,

in case the interviewer noticed any possible misunderstanding of

questions. After the conclusion of the analysis, the final manuscript

related to the results of the interviews were sent to the participants

for validation. This validation did not result in change requests

from participants.

Number of participants.A larger number of participants should

be interviewed to capture the general view of a broader audience.

However, this type of study is limited by the availability of practi-

tioners willing to participate in a study without any type of reward

or compensation for their time. Therefore, we sent 80 invitations

by e-mail. Consequently, we cannot generalize the results of the

study. Nonetheless, we found some consensus in a random sample

with participants from different projects, which may depict percep-

tions of the community regarding how collaboration happens in

fork-based development projects.

Brazilian participants.We interviewed twelve Brazilian devel-

opers in order to avoid communication issues. However, it could

have the chance of limiting the generalization of our subjects. To

mitigate this limitation, we were careful to invite active and experi-

enced contributors to the open source project (top-eighty contribu-

tions on GitHub). In fact, before starting the interview, all inter-

viewees had the opportunity to talk about the main open source

projects they contributed and their current occupation. Most of

them have worked as senior developers not only in Brazil but also

in other countries (England, the United States, and Germany). Fur-

thermore, they have contributed to projects with a higher number

of stars, which attract collaborators from several places around the

world. All these factors corroborate with the interviewees’ expertise

in global collaboration with open source development.

7 CONCLUSION AND FUTUREWORK

The importance of collaboration in globally distributed software de-

velopment is no novelty. However, the collaboration process evolves

continuously, responding to changes in developmentmethodologies

and technologies, and taking advantage of communication tech-

nologies. In the specific case of fork-based development projects,

collaboration is a key factor. In this study, our main findings include:

(i) collaboration transcends coding, and includes documentation

and management tasks; (ii) the collaboration process has differ-

ent nuances and challenges when considering members of the core

team interacting with each other, and members of the team interact-

ing with peripheral contributors; collaboration is heavily driven by

issue management, and it is impacted bymanagement skills in defin-

ing, categorizing, and sizing tasks accordingly, in such way that the

community (including newcomers) can collaborate independently;

(iii) knowledge management is a challenge in collaboration, and it

is important to carefully define communication policies in order to

mitigate and avoid problems related to knowledge retention and

decentralization.

Future Work. Our results could be compared with direct ob-

servations of developer activity in forking projects using a survey.

Also, the identification of the factors which may impact collabora-

tion among developers may be considered as future work. Hence,

if we identify these factors, we can calibrate them to connect the

desired collaboration team naturally. Besides, we are working on

in a Web-tool to connect developers based on their similarities to

improve collaboration among developers. These works would be

essential steps to improve collaboration in the context of fork-based

development.

8 ACKNOWLEDGMENTS

Many thanks to participants of our interviews and reviewers. This

research was partially supported by Brazilian funding agencies:

CNPq (Grant 424340/2016-0), CAPES (88881.189537/2018-01), and

FAPEMIG (Grant PPM-00651-17).

REFERENCES
[1] M. Arciniegas-Mendez, A. Zagalsky, M. Storey, and A. F. Hadwin. 2017. Using the

model of regulation to understand software development collaboration practices
and tool support. In Conference on Computer Supported Cooperative Work and
Social Computing (CSCW). 1049–1065.

[2] C. Bird. 2011. Sociotechnical Coordination and Collaboration in Open Source
Software. In International Conference on Software Maintenance (ICSM). 568–573.

[3] T. Bissyandé, D. Lo, L. Jiang, L. Réveillere, J. Klein, and Y. Le Traon. 2013. Got
Issues? Who Cares About it? a Large Scale Investigation of Issue Trackers From
Github. In International Symposium on Software Reliability Engineering (ISSRE).
IEEE, 188–197.

[4] P. Bjorn, J. Bardram, G. Avram, L. Bannon, A. Boden, D. Redmiles, C. De Souza, and
V.Wulf. 2014. Global Software Development in a CSCWPerspective. InConference
on Computer Supported Cooperative Work and Social Computing (CSCW). 301–304.

[5] B. Butler, L. Sproull, S. Kiesler, and R. Kraut. 2002. Community Eeffort in Online
Groups: Who Does the Work and Why. Leadership at a Distance: Research in
Technologically Supported Work 1 (2002), 171–194.

[6] A. Capiluppi, P. Lago, andM. Morisio. 2003. C. In European Conference on Software
Maintenance and Reengineering (CSMR). IEEE, 317–327.

64

[7] J. Corbin and A. Strauss. [n. d.]. Basics of Qualitative Research: Techniques and
Procedures for Developing Grounded Theory.

[8] J. W Creswel. 2009. Research Design: Qualitative, Quantitative, and Mixed
Methods Approaches. Los angeles: University of Nebraska–Lincoln (2009).

[9] K. Crowston, K. Wei, J. Howison, and A. Wiggins. 2008. Free/Libre Open-source
Software Development: What We Know and What We Do Not Know. ACM
Computing Surveys (CSUR) 44, 2 (2008), 1–35.

[10] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb. 2012. Social Coding in GitHub:
Transparency and Collaboration in an Open Software Repository. In Conference
on Computer Supported Cooperative Work (CSCW). 1277–1286.

[11] J. Gamalielsson and B. Lundell. 2014. Sustainability of Open Source Software
Communities Beyond a Fork: How andWhy Has the LibreOffice Project Evolved?
Journal of Systems and Software 89 (2014), 128 – 145.

[12] G. Gousios, M. Pinzger, and A. Deursen. 2014. An Exploratory Study of the
Pull-Based Software Development Model. In International Conference on Software
Engineering (ICSE). 345–355.

[13] G. Gousios, M. Storey, and A. Bacchelli. 2016. Work Practices and Challenges in
Pull-based Development: The Contributor’s Perspective. In International Confer-
ence on Software Engineering (ICSE). 285–296.

[14] G. Gousios, A. Zaidman, M. Storey, and A. Van Deursen. 2015. Work Practices
and Challenges in Pull-based Development: The Integrator’s Perspective. In
International Conference on Software Engineering (ICSE). 358–368.

[15] J. D. Herbsleb and D. Moitra. 2001. Global Software Development. IEEE Software
18, 2 (2001), 16–20.

[16] E. Kalliamvakou, D. Damian, K. Blincoe, L. Singer, and D. German. 2015. Open
Source-Style Collaborative Development Practices in Commercial Projects Using
GitHub. In International Conference on Software Engineering (ICSE). IEEE, 574–
585.

[17] K. R. Lakhani and E. Von Hippel. 2004. How Open Source Software Works:“Free”
User-to-User Assistance. In Produktentwicklung mit virtuellen Communities.
Springer, 303–339.

[18] F. Lanubile, C. Ebert, R. Prikladnicki, and A. Vizcaíno. 2010. Collaboration Tools
for Global Software Engineering. IEEE software 27, 2 (2010), 52–55.

[19] A. Laurent. 2004. Understanding Open Source and Free Software Licensing: Guide
to Navigating Licensing Issues in Existing & New Software. "O’Reilly Media, Inc.".

[20] A. Lee and J. C. Carver. 2017. Are One-Time Contributors Different? A Com-
parison to Core and Periphery Developers in Floss Repositories. In International
Symposium on Empirical Software Engineering and Measurement (ESEM). 1–10.

[21] A. Lee, J. C. Carver, and A. Bosu. 2017. Understanding the Impressions, Motiva-
tions, and Barriers of One Time Code Contributors to FLOSS Projects: A Survey.
In International Conference on Software Engineering (ICSE). 187–197.

[22] J. Linåker, H. Munir, K. Wnuk, and C. Mols. 2018. Motivating the Contributions:
An Open Innovation Perspective on What to Share as Open Source Software.
Journal of Systems and Software 135 (2018), 17–36.

[23] J. Marlow, L. Dabbish, and J. Herbsleb. 2013. Impression Formation in Online
Peer Production: Activity Traces and Personal Profiles in GitHub. In Conference
on Computer Supported Cooperative Work (CSCW). 117–128.

[24] N. McDonald and S. Goggins. 2013. Performance and Participation in Open
Source Software on GitHub. In Conference on Human Factors in Computing
Systems (CHI). 139–144.

[25] C. Miller, D. Gray Widder, C. Kästner, and B. Vasilescu. 2019. Why do People
Give Up Flossing? A Study of Contributor Disengagement in Open Source. In
International Conference on Open Source Systems. Springer, 116–129.

[26] K. W. Miller, J. Voas, and T. Costello. 2010. Free and Open Source Software. IT
Professional 12, 6 (2010), 14–16.

[27] S. Minto and G. C. Murphy. 2007. Recommending Emergent Teams. In Interna-
tional Conference on Mining Software Repositories (MSR). 5–5.

[28] R.Mokarzel Filho, M. de Souza Pereira, C. Faria, and G. Lemos. 2019. Collaboration
Tool for Distributed Open Source Verification. In International Conference on
Global Software Engineering (ICGSE). IEEE, 139–142.

[29] J. Oliveira, E. Fernandes, G. Vale, and E. Figueiredo. 2017. Identification and
prioritization of reuse opportunities with JReuse. In International Conference on
Software Reuse (ICSR). Springer, 184–191.

[30] J. Oliveira, M. Viggiato, and E. Figueiredo. 2019. How Well Do You Know This
Library? Mining Experts from Source Code Analysis. In Brazilian Symposium on
Software Quality (SBQS). 49–58.

[31] R. Pham, L. Singer, O. Liskin, F. Figueira Filho, and K. Schneider. 2013. Creating a
Shared Understanding of Testing Culture on a Social Coding Site. In International
Conference on Software Engineering (ICSE). IEEE, 112–121.

[32] G. Pinto, I. Steinmacher, andM. Gerosa. 2016. More Common Than You Think: An
In-Depth Study of Casual Contributors. In International Conference on Software
Analysis, Evolution, and Reengineering (SANER). IEEE, 112–123.

[33] H. Qiu, A. Nolte, A. Brown, A. Serebrenik, and B. Vasilescu. 2019. Going Farther
Together: The Impact of Social Capital on Sustained Participation in Open Source.
In International Conference on Software Engineering (ICSE). IEEE, 688–699.

[34] I. Qureshi and Y. Fang. 2011. Socialization in Open Source Software Projects: A
Growth Mixture Modeling Approach. Organizational Research Methods (2011),
208–238.

[35] A. Rastogi and N. Nagappan. 2016. Forking and the Sustainability of the Developer
Community Participation–An Empirical Investigation on Outcomes and Reasons.
In International Conference on Software Analysis, Evolution, and Reengineering
(SANER). IEEE, 102–111.

[36] D. Riehle, J. Ellenberger, T. Menahem, B. Mikhailovski, Y. Natchetoi, B. Naveh,
and T. Odenwald. 2009. Open Collaboration within Corporations using Software
Forges. IEEE software 26, 2 (2009), 52–58.

[37] S. Schulze S. Stănciulescu and A. Wąsowski. 2015. Forked and Integrated Variants
in an Open-Source Firmware Project. In International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 151–160.

[38] A. Schilling. 2014. What DoWe Know About Floss Developers’ Attraction, Reten-
tion, and Commitment? A Literature Review. In Hawaii International Conference
on System Sciences (HICSS). 4003–4012.

[39] A. Schilling, S. Laumer, and T. Weitzel. 2012. Who will Remain? an Evaluation of
Actual Person-Job and Person-Team Fit to Predict Developer Retention in FLOSS
Projects. In Hawaii International Conference on System Sciences (HICSS). IEEE,
3446–3455.

[40] I. Steinmacher, A. P. Chaves, andM. A. Gerosa. 2010. Awareness Support in Global
Software Development: a Systematic Review based on the 3CCollaborationModel.
In International Conference on Collaboration and Technology (CRIWG). Springer,
185–201.

[41] I. Steinmacher, G. Pinto, I. Wiese, and M. Gerosa. 2018. Almost There: A Study on
Quasi-Contributors in Open-Source Software Projects. In International Conference
on Software Engineering (ICSE). IEEE, 256–266.

[42] I. Steinmacher, C. Treude, and M. A. Gerosa. 2018. Let Me In: Guidelines for the
Successful Onboarding of Newcomers to Open Source Projects. IEEE Software 36,
4 (2018), 41–49.

[43] M. Storey, L. Singer, B. Cleary, F. Figueira Filho, and A. Zagalsky. 2014. The
(r) Evolution of Social Media in Software Engineering. In Proceedings of the on
Future of Software Engineering. 100–116.

[44] J. Tsay, L. Dabbish, and J. Herbsleb. 2014. Influence of Social and Technical Factors
for Evaluating Contribution in GitHub. In International Conference on Software
Engineering (ICSE). 356–366.

[45] Y. Tymchuk, A. Mocci, andM. Lanza. 2014. Collaboration in Open-Source Projects:
Myth or Reality?. In International Conference on Mining Software Repositories
(MSR). 304–307.

[46] B. Ulziit, Z. A. Warraich, C. Gencel, and K. Petersen. 2015. A Conceptual Frame-
work of Challenges and Solutions for Managing Global Software Maintenance.
Journal of Software: Evolution and Process (2015), 763–792.

[47] M. Viggiato, J. Oliveira, E. Figueiredo, Pooyan Jamshidi, and C. Kästner. 2019. How
Do Code Changes Evolve in Different Platforms? A Mining-based Investigation.
In International Conference on Software Maintenance and Evolution (ICSME). IEEE,
218–222.

[48] M. Viggiato, J. Oliveira, E. Figueiredo, P. Jamshidi, and C. Kästner. 2019. Under-
standing Similarities and Differences in Software Development Practices Across
Domains. In International Conference on Global Software Engineering (ICGSE).
IEEE, 84–94.

[49] G. Von Krogh, S. Haefliger, S. Spaeth, and M. Wallin. 2012. Carrots and Rainbows:
Motivation and Social Practice in Open Source Software Development. MIS
quarterly (2012), 649–676.

[50] J. Whitehead. 2007. Collaboration in Software Engineering: A Roadmap. In Future
of Software Engineering. IEEE, 214–225.

[51] Y. Yue, I. Ahmed, Y. Wang, and D. Redmiles. 2019. Collaboration in Global
Software Development: An Investigation On Research Trends and Evolution.
In International Conference on Global Software Engineering (ICGSE). IEEE Press,
68–69.

[52] S. Zhou, B. Vasilescu, and C. Kästner. 2019. What the Fork: A Study of Inefficient
and Efficient Forking Practices in Social Coding. In Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (FSE/ESEC). 350–361.

65

